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Course Objective

Identify the terms involved in inventory rate equation of mass, energy

and momentum
Recall the basic concepts involved in modeling and simulation

Apply conservation of mass, momentum and energy equations to

engineering problems.
Develop model equations for chemical engineering systems

Solve the model equations and chemical engineering problems using

numerical techniques
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Introduction to Process Modeling and Simulation

 Process simulation is a successful tool for design, optimization

and control of chemical processes

 Use of simulation expanded due to availability of high speed

computers and software packages

] Availability of solution techniques further broadened the use

of simulation
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Introduction to Process Modeling and Simulation

Skills Required

1 Sound understanding of engineering fundamentals (physical

system & mechanisms).
[ Process cannot be viewed as a black box!
1 Modeling skills (sound mathematical relations).

J Computational skills (proper solution technique, software

package, computer, etc.)
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What does “Model” mean?

 Representation of a physical system by mathematical

equations

(] Models at their best are no more than approximation of the real

process

 Equations are based on fundamental laws of physics
(conservation principle, transport phenomena,

thermodynamics and chemical reaction kinetics).
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What does “Simulation” mean?

1 Solving the model equations analytically or numerically.

] Modeling & Simulation are valuable tools: safer and
cheaper to perform tests on the model using computer
simulations rather than carrying repetitive experimentations

and observations on the real system.
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System

[ Classification based on thermodynamic principles
1. Isolated system.

1. Closed system.

1. Open system.

[ Classification based on number of phases

a. Homogeneous system.

b. Heterogeneous system.
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What does “Steady state and Dynamic” means?

1 Dynamic: In all processes of interest, the operating conditions
(e.g., temperature, pressure, composition) inside a process unit

will be varying over time.

] Steady-state: process variables will not be varying with time
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Why Dynamic Behaviour?

A subject of great importance for the:

1. Study of operability and controllability of continuous processes

subject to small disturbances
2. Development of start-up and shut-down procedures

3. Study of switching continuous processes from one steady-state to

another
4. Analysis of the safety of processes subject to large disturbances

5. Study of the design and operation procedures for intrinsically

dynamic processes (batch/periodic/separation)
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Impact of simulation on chemical process industry...

1 Economic: cheaper to use simulation than to build numerous

different-size pilot-plants

] Operation: Easier to develop alternative operating approaches

via a mathematical model than by experimental methods

( Scale up: First-principles simulations can predict system

performance in new and different operating conditions
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Strategy for simulation of complex chemical
processes...

Problem definition

l I

Mathematical modeling
of process
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Equation organization
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‘ Computation

l I

‘Results interpretation

De D 1/ C
Ul. D. NTo1rria ariridart




Systematic Model Building

1. Problem definition

l

.| 2. Identify controlling
factors

!

3. Evaluate the problem
data

4. Construct the model [«=——

l

5. Solve the model [¥———

!

6. Verify the solution

v

_l 7. Validate the model
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(inputs, outputs, etc.)

(chemical reaction, diffusion,
fluid flows, etc.)

(compare with experiments)



Strategy for simulation of complex chemical
processes...

] A good Problem definition comes from

v" What I really want to find out?

v" What are the important consequences of the simulation?
v" Why is simulation work required?

v" What data are available?

v What form of model is required?

v" What are system inputs, outputs, states, ...
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Classification of Mathematical Models

Type of model
Mechanistic
Empirical

Stochastic
Deterministic

Lumped
Distributed

Linear
Nonlinear

Continuous
Discrete

Classification
First-principles
Trials/experiments

Probabilistic
Cause-effect

Independent of space
Dependent on space

Superposition applies
Superposition does not apply

Over continuous time
For discrete values of time
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Ingredients of Process Models

1. Assumptions

— Time, spatial characteristics

— Flow conditions

2. Model equations and characterizing variables
— Mass, energy, momentum

3. Initial conditions

4. Boundary conditions

5. Parameters
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Ingredients of Process Models

* In mathematics, the field of differential equations, an initial value
problem (also called the Cauchy problem by some authors) is an
ordinary differential equation together with a specified value, called
the initial condition, of the unknown function at a given point in the

domain of the solution.

* In mathematics, in the field of differential equations, a boundary value
problem 1s a differential equation together with a set of additional

constraints, called the boundary conditions
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Process Classification: Batch vs. Continuous

(] Batch Process:

O feedstocks for each processing step (i.e., reaction, distillation) are
charged into the equipment at the start of processing; products are

removed at the end of processing

U Transfer of material from one item of equipment to the next occurs

discontinuously often via intermediate storage tanks

O Batch processes are intrinsically dynamic conditions within the

equipment vary over the duration of the batch
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Batch Process Example: Batch Reactor
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Variations on Batch Operation
] Semi-batch:

[ One or more feedstocks to a batch unit operation to be added

during the batch
(] Semi-continuous:

1 Some of the products are removed during the batch
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Continuous Process

[ Involve continuous flows of material from one processing unit

to the next

 Usually designed to operate at steady-state; due to external

disturbances, even continuous processes operate dynamically

F,El Tfl'ﬂ

PF; n, Tfin, vl'n

Continuous Process Example : PFR
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Variation on Continuous OPERATION
U Periodic:
O Continuous processes subjected to a periodic (e.g., sinusoidal or square
wave) variation of one or more of the material/energy input streams
O Industrially Important Examples

U Periodic adsorption — periodic conditions (pressure/temperature) regulates
preferential adsorption and desorption of different species over different

parts of the cycle

O Periodic catalytic reaction — involves variation of feed composition;

under certain conditions the average performance of the reactor 1s improved
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Lumped vs. Distributed

J Lumped Operations:

O Perfect mixing— at any particular time instant, the values of
operating conditions are (approximately) the same at all points

within the unit
U Distributed Operations:

O Imperfect mixing will result in different operating conditions at
different points even at the same time — existence of distributions

of conditions over spatial domains
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Lumped vs. Distributed : Mathematical
Considerations

1 Lumped Operations:
[ Characterized by a single independent variable (time)

O Their modelling can be effected in terms of ordinary differential

equations (ODEs)
U Distributed Operations:

O Introduce additional independent variables (e.g., one or more spatial

co-ordinates, particle size, molecular weight, etc.)

U Involves partial differential equations (PDEs) in time
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Conservation Laws: General Form

1 Conservation laws describe the variation of the amount of a

“conserved quantity” within the system over time:

([ rateof )

accumulation
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flow of
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| withinsystem

_Into system |

[ rateof
flow of
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Conservation Laws

Total mass balance:

Rate of Accumulation = Rate of total - Rate of total
of total mass mass in mass out

Species mass balance:

Rate of Accumulation = Rate of i — Rate of i + Rate of generation
of ¢ in out of i

Energy balance:

Rate of Accumulation = Rate of energy — Rate of energy +Rate of generation
of energy in out of energy

Momentum balance:

Rate of Accumulation = Rate of momentum — Rate of momentum + Rate of generation
of momentum in out of momentum
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Software’s for process simulation

Universal software:

— Worksheets — Excel, Calc (Open Office)
— Mathematical software — MathCAD, Matlab

Specialized software — process simulators. Equipped
with:

— Data base of apparatus models

— Data base of components and mixtures properties

— Solver engine

— User friendly interface
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3.

Software process simulators

Some actual process simulators:

ASPEN Tech /HYSYS
ChemCAD
PRO/II

ProSim

COMSOL Multiphysics etc.,
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Introduction: Basic Concepts

A concept 1s a unit of thought. Any part of experience that we can organize
into an idea is a concept. For example, man's concept of cancer 1s changing
all the time as new medical information is gained as a result of
experiments.

Concepts or ideas that axe the basis of science and engineering are
chemical species, mass, momentum, and energy. A conserved quantity 1s
one which can be transformed. However, transformation does not alter the
total amount of the quantity.

For example, money can be transferred from a checking account to a
savings account but the transfer does not affect the total assets.

For any quantity that is conserved, an inventory rate equation can be
written to describe the transformation of the conserved quantity.

Inventory of the conserved quantity is based on a specified unit of time,
which 1s reflected in the term, rate. In words, this rate equation for any
conserved quantity ¢ takes the form

Rate of Rate of Rate of Rate of
. — + ; = . : (1.1-1)
input of output of ¢ generation of ¢ accumulation of ¢



»> Basic concepts upon which the technique for solving
engineering problems is based are the rate equations for
the

* Conservation of chemical species,

* Conservation of mass,

* Conservation of momentum,

* Conservation of energy.

» Characteristics of the Basic Concepts

* The basic concepts have certain characteristics that are always
taken for granted but seldom stated explicitly. The basic
concepts are

* Independent of the level of application,

e Independent of the coordinate system to which they are
applied,
 Independent of the substance to which they are applied.



Table 1.1. Levels of application of the basic concapts

Level Theory Experiment

Microscopic  Equations of Change Constitutive Equations
Macroscopic  Design Equations Process Correlations

The basic concepts are applied at both the microscopic and the macroscopic levels as shown
in Table 1.1.

At the microscopic level, the basic concepts appear as partial differential equations in three
independent space variables and time. Basic concepts at the microscopic level are called the
equations of change, 1.e., conservation of chemical species, mass, momentum, and energy.

Any mathematical description of the response of a material to spatial gradients is called a
constiturive eguation. Just as the reaction of different people to the same joke may vary, the
response of materials to the variable condition in a process differs. Constitutive equations are
postulated and cannot be derived from the fundamental principles’. The coefficients appearing
in the constitutive equations are obtained from experiments.

Integration of the equations of change over an arbitrary engineering volume exchanging
mass and energy with the surroundings gives the basic concepts at the macroscopic level.
The resulting equations appear as ordinary differential equations, with time as the only inde-
pendent variable. The basic concepts at this level are called the design equarions or macro-
scopic balances. For example, when the microscopic level mechanical energy balance is in-
tegrated over an arbitrary engineering volume, the result is the macroscopic level engineering

Bernoulli equation.
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Constitutive equations, when combined with the equations of change, may or may not
comprise a determinate mathematical system. For a determinate mathematical system, i.e.,
the number of unknowns is equal to the number of independent equations, the solutions of
the equations of change together with the constimtive equations result in the velocity, tem-
perature, pressure, and concentration profiles within the system of interest. These profiles are
called rheoretical (or analvtical) selutions. A theoretical solution enables one to design and
operate a process without resorting to experiments or scale-up. Unfortunately, the number of
such theoretical solutions is small relative to the number of engineering problems that must
be solved.

If the required number of constitutive equations is not available, i.e.. the number of un-
knowns is greater than the number of independent equations, then the mathematical descrip-
tion at the microscopic level is indeterminate. In this case, the design procedure appeals to
an experimental information called process correlation to replace the theoretical solution. All
process correlations are limited to a specific geometry, equipment configuration, boundary
conditions, and substance.
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Definitions

1.2.1 Steady-State

The term steady-state means that at a particular location in space the dependent variable does
not change as a function of time. If the dependent variable is @, then

(3_‘*‘*) =0 (1.2-2)
a1t o

The partial derivative notation indicates that the dependent variable is a function of more
than one independent variable. In this particular case, the independent variables are (x, v, z)
and r. The specified location in space is indicated by the subscripts (x, v, z). and Eq. (1.2-2)
implies that ¢ is not a function of time, r. When an ordinary derivative is used, i.e., dp/dr =0,
then this implies that @ is a constant. It is important to distinguish between partial and ordinary
derivatives because the conclusions are very different.

Dr. B. Krishna Srihari



Example 1.2 A cylindrical tank is initially half full with water. The water is fed into the
tank from the top and it leaves the tank from the bottom. The inlet and outlet volumetric

flow rates are different from each other. The differential equation describing the time rate of
change of water height is given by

dh
— =6—8Vh
dt

where h is the height of water in meters. Calculate the height of water in the tank under
steady conditions.

Solution

Under steady conditions dh fdr must be zero. Then
0=6—8Vh

Or,

h=056m
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1.2.2 Uniform

The term uniform means that at a particular instant in time, the dependent variable is not
a function of position. This requires that all three of the partial derivatives with respect to

position be zero, i.e.,
d i d
(_‘F’) - (_"”) - (_"ﬂ) =0 (1.2-3)
dx ¥.Z.! Ay /o4 dz X,y

The variation of a physical quantity with respect to position is called gradient. Therefore,
the gradient of a quantity must be zero for a uniform condition to exist with respect to that
quantity.

1.2.3 Equilibrium

A system is in equilibritm if both steady-state and uniform conditions are met simultane-
ously. An equilibrium system does not exhibit any variation with respect to position or time.
The state of an equilibrium system is specified completely by the non-Euclidean coordinates’
(P, V,T). The response of a material under equilibrium conditions is called property corre-
lation. The 1deal gas law is an example of a thermodynamic property correlation that is called
an eguation of state.

1.2.4 Flux
The flux of a certain quantity is defined by

Flow of a quantity/Time _ Flow rate

= 1.2-4
Area Area ( )

Flux =

where area is normal to the direction of flow. The units of momentum, energy, mass, and molar
fluxes are Pa {mel, or kg}m-szjr, meld:l ﬁnﬁs.ﬁhakgyfml-sﬁ and kmol/ m’-s, respectively.



1.3 MATHEMATICAL FORMULATION OF THE BASIC CONCEPTS

In order to obtain the mathematical description of a process, the general inventory rate equa-
tion given by Eq. (1.1-1) should be translated into mathematical terms.
1.3.1 Inlet and Outlet Terms

A quantity may enter or leave the system by two means: (i) by inlet and/or outlet streams,
(ii) by exchange of a particular quantity between the system and its surroundings through
the boundaries of the system. In either case, the rate of input and/or output of a quantity is
expressed by using the flux of that particular quantity. The flux of a quantity may be constant
or dependent on position. Thus, the rate of a quantity can be determined as

(Flux)(Area) if flux is constant

Inlet/Outlet rate = f Flux dA  if flux is position dependent (1.3-1)
A

where A is the area perpendicular to the direction of the flux. The differential areas in cylin-
drical and spherical coordinate systems are given in Section A.l in Appendix A.
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1.3.2 Rate of Generation Term

The generation rate per unit volume is denoted by R and it may be constant or dependent on
position. Thus, the generation rate is expressed as

(") Volume) if ¥R is constant

Generation rate = f f f MdV  if N is position dependent (1.3-2)
v

where V is the volume of the system in question. It is also possible to have the depletion of
a quantity. In that case, the plus sign in front of the generation term must be replaced by the
minus sign, i.e.,

Depletion rate = — Generation rate (1.3-3)
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1.3.3 Rate of Accumulation Term

The rate of accumulation of any quantity ¢ is the time rate of change of that particular quantity
within the volume of the system. Let o be the mass density and ¢ be the quantity per unit mass.
Thus,

Total quantity of ¢ = f f f ppdV (1.3-4)
Vv

and the rate of accumulation is given by

d
Accumulation rate = - f f f podV (1.3-5)
V

If ¢ is independent of position, then Eq. (1.3-5) simplifies to

Accumulation rate = E{m @) (1.3-6)
where m is the total mass within the system.

The accumulation rate may be positive or negative depending on whether the quantity is
increasing or decreasing with time within the volume of the system.
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1.4 SIMPLIFICATION OF THE RATE EQUATION

In this section, the general rate equation given by Eq. (1.1-1) will be simplified for two special
cases: (i) steady-state transport without generation, (ii) steady-state transport with genera-

tion.

1.4.1 Steady-State Transport Without Generation
For this case Eq. (1.1-1) reduces to

Rate of input of ¢ = Rate of output of ¢

Equation (1.4-1) can also be expressed in terms of flux as

ff {Inlet flux of p) dA = ff (Outlet flux of ) dA
ﬂju -"-.:u.u

For constant inlet and outlet fluxes Eq. (1.4-2) reduces to

Inlet flux | (Inlet} _ ( Outlet flux \ / Outlet
of @ area | ~ of @ area
If the inlet and outlet areas are equal, then Eq. (1.4-3) becomes

Inlet flux of ¢ = Outlet flux of ¢

(1.4-1)

(1.4-2)

(1.4-3)

(1.4-4)

It is important to note that Eq. (1.4-4) is valid as long as the areas perpendicular to the di-
rection of flow at the inlet and outlet of the system are equal to each other. The variation of the
area in between does not affect this conclusion. Equation (1.4-4) obviously is not valid for the
transfer processes taking place in the radial direction in cylindrical and spherical coordinate

systems. In this case either Eq. (1.4-2) or Eq. (1.4-3) should be used.
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Figure 1.2. Heat transfer through a solid circular cone.

Example 1.5 Consider a solid cone of circular cross-section whose lateral surface is well
insulated as shown in Figure 1.2. The diameters at x =0 and x = L are 25 cm and 5 cm,
respectively. If the heat flux at x =0 is 45 mez under steady conditions, determine the
heat transfer rate and the value of the heat luxatx = L.

Solution

For steady-state conditions without generation, the heat transfer rate is constant and can be
determined from Eq. (1.3-1) as

Heat transfer rate = (Heat flux),—g{Area)—g

Since the cross-sectional area of the cone is = D?/4, then
0.25)
Heat transfer rate = (45}[%] =221 W

The value of the heat transfer rate is also 2.21 W at x = L. However, the heat flux does
depend on position and its value at x = L is

2.21

- 2
005,54 = 1126 W/m

(Heat lux),—; =
Comment: Heat flux values are different from each other even though the heat flow rate is
constant. Therefore, it is important to specify the area upon which a given heat flux is based
when the area changes as a function of position.



1.4.2 Steady-State Transport with Generation
For this case Eq. (1.1-1) reduces to

Rate of Rate of Rate of
(input of r,:}) + (g&nﬂratinn of r,:}) = (crulput of r,:}) (14-5)

Equation (1.4-5) can also be written in the form

ff (Inlet flux of @) dA + fff HdV = ff (Outlet lux of @) dA (1.4-6)
.-an Fj:l.'_l‘ "q'ﬂ.lﬂ

where i is the generation rate per unit volume. If the inlet and outlet fluxes together with the
generation rate are constant, then Eq. (1.4-6) reduces to

[nlet flux Inlet 40 System _ Outlet flux Outlet (1.4-T)
of ¢ area volume of @ drea
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Example 1.6 An exothermic chemical reaction takes place in a 20 cm thick slab and the
energy generation rate per unit volume is 1 x 108 W,ﬂ’mj‘- The steady-state heat transfer rate
into the slab at the left-hand side, 1.e., at x =0, is 280 W. Calculate the heat transfer rate

to the surroundings from the right-hand side of the slab, i.e., at x = L. The surface area of

each face is 40 cm?.

Solution

At steady-state, there is no accumulation of energy and the use of Eq. (1.4-3) gives

(Heat transfer rate),_; = (Heat transfer rate), _g + $H (Volume)

= 280 4 (1 x 10%)(40D x 10~*)(20 x 1072) = 1080 W

The values of the heat fluxes at x =0 and x = L are

280 3 2
(Heat flux), 5 = 20 < 103 =70 10" W/m

1080 a
(Heat flux), _ = - =270 x 10° W/m

Comment: Even though the steady-state conditions prevail, neither the heat transfer rate
nor the heat flux are constant. This is due to the generation of energy within the slab.
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PROBLEMS

1.1 One of your friends writes down the inventory rate equation for money as

Change in amount | (Interest) — Service " Dollars |  (Checks
of dollars = \Terest charge deposited written

Identify the terms in the above equation.

Answer
Rate of Accumulation = (Rate of generation) - (Rate of disappearance) + (Rate
of Input) - (Rate of Output)

1.2 Determine whether steady- or unsteady-state conditions prevail for the following
cases:

a) The height of water in a dam during heavy rain,
b) The weight of an athlete during a marathon,
¢) The temperature of an ice cube as it melts.
Answer
(a) Unsteady state (b) Steady Sate (c) Steady state
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14 Steam at a temperature of 200°C flows through a pipe of 5 cm inside diameter and
6 cm outside diameter. The length of the pipe is 30 m. If the steady rate of heat loss per unit
length of the pipe is 2 W /m, calculate the heat fluxes at the inner and outer surfaces of the
pipe.

(Answer: 12.7 W/m” and 10.6 W/m?)

Answers
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1.5 Dust evolves at a rate of 0.3 kg/h in a foundry of dimensions 20 m x 8 m x 4 m. Ac-
cording to ILO (International Labor Organization) standards, the dust concentration should
not exceed 20 mg/m” to protect workers' health. Determine the volumetric flow rate of

ventilating air to meet the standards of ILO.
(Answer: 15, 000 m?/h)
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2

MOLECULAR AND CONVECTIVE TRANSPORT

The total flux of any quantity is the sum of the molecular and convective fluxes. The fluxes
arising from potential gradients or driving forces are called molecular fluxes. Molecular fluxes
are expressed in the form of constitutive (or phenomenological) equations for momentum,
energy, and mass transport. Momentum, energy, and mass can also be transported by bulk
fluid motion or bulk flow, and the resulting flux is called convective flux. This chapter deals
with the formulation of molecular and convective fluxes in momentum, energy, and mass
transport.

2.1 MOLECULAR TRANSPORT

Substances may behave differently when subjected to the same gradients. Constitutive equa-
tions identify the characteristics of a particular substance. For example, if the gradient is
momentum, then the viscosity is defined by the constitutive equation called Newton’s law of
viscosity. If the gradient is energy, then the thermal conductivity is defined by Fourier’s law
of heat conduction. If the gradient is concentration, then the diffusion coefficient is defined
by Fick’s first law of diffusion. Viscosity, thermal conductivity, and diffusion coefficient are
called transport properties.

2.1.1 Newton’s Law of Viscosity

Consider a fluid contained between two large parallel plates of area A, separated by a very
small distance Y. The system is initially at rest but at time ¢t = 0 the lower plate is set in
motion in the x-direction at a constant velocity V by applying a force F in the x-direction
while the upper plate is kept stationary. The resulting velocity profiles are shown in Figure 2.1
for various times. At ¢ = 0, the velocity is zero everywhere except at the lower plate, which
has a velocity V. Then the velocity distribution starts to develop as a function of time. Finally,
at steady-state, a linear velocity distribution is obtained.

Experimental results show that the force required to maintain the motion of the lower plate
per unit area (or momentum flux) is proportional to the velocity gradient, i.e.,

F v (2.1-1)
J— — /’L —_ -
A —_ Y
M v Transport IV I
omentum property Ve 0'c1ty
flux gradient
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14 2. Molecular and Convective Transport
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Figure 2.1. Velocity profile development in flow between parallel plates.

and the proportionality constant, u, is the viscosity. Equation (2.1-1) is a macroscopic equa-
tion. The microscopic form of this equation is given by

dvy
dy

Tyx = —HM = —UVyx (2.1-2)

which is known as Newton’s law of viscosity and any fluid obeying Eq. (2.1-2) is called a
Newtonian fluid. The term y,, is called rate of strain' or rate of deformation or shear rate.
The term 7y, is called shear stress. It contains two subscripts: x represents the direction of
force, i.e., Fy, and y represents the direction of the normal to the surface, i.e., Ay, on which
the force is acting. Therefore, 7y, is simply the force per unit area, i.e., F,/A,. It is also
possible to interpret Ty, as the flux of x-momentum in the y-direction.
Since the velocity gradient is negative, i.e., v, decreases with increasing y, a negative sign
is introduced on the right-hand side of Eq. (2.1-2) so that the stress in tension is positive.
In SI units, shear stress is expressed in N/ m?(Pa) and velocity gradient in (m/s) /m. Thus,
the examination of Eq. (2.1-1) indicates that the units of viscosity in SI units are
N/m? N-s  (kgm/s?)-s kg
Pas=—=——-7—=—

m= (m/s)/m - - m? m? m-s

Most viscosity data in the cgs system are usually reported in g/(cm-s), known as a poise (P),
or in centipoise (1 cP = 0.01 P), where

1 Pas = 10P = 10° cP

Viscosity varies with temperature. While liquid viscosity decreases with increasing temper-
ature, gas viscosity increases with increasing temperature. Concentration also affects viscosity
for solutions or suspensions. Viscosity values of various substances are given in Table D.1 in
Appendix D.

Example 2.1 A Newtonian fluid with a viscosity of 10 cP is placed between two large
parallel plates. The distance between the plates is 4 mm. The lower plate is pulled in the
positive x-direction with a force of 0.5 N, while the upper plate is pulled in the negative

IStrain is defined as deformation per unit length. For example, if a spring of original length L, is stretched to a
length L, then the strainis (L — Ly)/Lo.



2.1 Molecular Transport 15

x-direction with a force of 2 N. Each plate has an area of 2.5 m?. If the velocity of the lower
plate is 0.1 m/s, calculate:

a) The steady-state momentum flux,
b) The velocity of the upper plate.

F=—2N<—*

Solution

Y =4 mm
Lx é — L F=05N
V;=0.1m/s
a) The momentum flux (or force per unit area) is
F 0542
YA T s y
b) Let V; be the velocity of the upper plate. From Eq. (2.1-2)
Y Vo ryx Y
Ty | dy=—np dvy, = Vr=V— (1)
0 Vi M
Substitution of the values into Eq. (1) gives
14 x 1073
V=0 - DG o )

10 x 103

The minus sign indicates that the upper plate moves in the negative x-direction. Note that
the velocity gradient is dv, /dy = —100 s~

2.1.2 Fourier’s Law of Heat Conduction

Consider a slab of solid material of area A between two large parallel plates of a distance
Y apart. Initially the solid material is at temperature 7, throughout. Then the lower plate is
suddenly brought to a slightly higher temperature, 7', and maintained at that temperature.
The second law of thermodynamics states that heat flows spontaneously from the higher tem-
perature 77 to the lower temperature 7,. As time proceeds, the temperature profile in the slab
changes, and ultimately a linear steady-state temperature is attained as shown in Figure 2.3.

Experimental measurements made at steady-state indicate that the rate of heat flow per unit
area is proportional to the temperature gradient, i.e.,

T —T,

2 _ (2.1-3)
A — Y

—~~— Transport ~———"

Energy property Temperature

flux gradient
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Increasing time

0 ®

g

Y a

Rz

y T=T, A

0
L, ol =%
x T,  Temperature T,
Dircction of

Energy Flux

Figure 2.3. Temperature profile development in a solid slab between two plates.

The proportionality constant, k, between the energy flux and the temperature gradient is called
thermal conductivity. In SI units, Q is in W({/s), Ainm?, dT /dx in K/m, and k in W/m-K.
The thermal conductivity of a material is, in general, a function of temperature. However,
in many engineering applications the variation is sufficiently small to be neglected. Thermal
conductivity values for various substances are given in Table D.2 in Appendix D.

The microscopic form of Eq. (2.1-3) is known as Fourier’s law of heat conduction and is
given by

qy = —k — (2.1-4)

in which the subscript y indicates the direction of the energy flux. The negative sign in
Eq. (2.1-4) indicates that heat flows in the direction of decreasing temperature.

Example 2.2 One side of a copper slab receives a net heat input at a rate of 5000 W due to
radiation. The other face is held at a temperature of 35 °C. If steady-state conditions prevail,
calculate the surface temperature of the side receiving radiant energy. The surface area of
each face is 0.05 m?, and the slab thickness is 4 cm.

Solution
so0w | ,_35|0C
=y
Physical Properties

For copper: kK =398 W/m-K
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Analysis
System: Copper slab

Under steady conditions with no internal generation, the conservation statement for energy
reduces to

Rate of energy in = Rate of energy out = 5000 W

Since the slab area across which heat transfer takes place is constant, the heat flux through
the slab is also constant, and is given by

000 00,000 W /m?
= = s m-
7 =70.05

Therefore, the use of Fourier’s law of heat conduction, Eq. (2.1-4), gives

100,000/
0

2.1.3 Fick’s First Law of Diffusion

0.04 35

dy:—398/ dT = T,=45.1°C
T,

0

Consider two large parallel plates of area A. The lower one is coated with a material, A, which
has a very low solubility in the stagnant fluid B filling the space between the plates. Suppose
that the saturation concentration of A is p4, and A undergoes a rapid chemical reaction at
the surface of the upper plate and its concentration is zero at that surface. At r = 0 the lower
plate is exposed to B and, as time proceeds, the concentration profile develops as shown in
Figure 2.4. Since the solubility of A is low, an almost linear distribution is reached under
steady conditions.

Experimental measurements indicate that the mass flux of A is proportional to the concen-
tration gradient, i.e.,

M A PA,

“A — Dyp (2.1-5)
A ~—~— Y
r Transport c \Tt'
ass oncentration
flux of A property gradient

where the proportionality constant, D4p, is called the binary molecular mass diffusivity (or
diffusion coefficient) of species A through B. The microscopic form of Eq. (2.1-5) is known

t=o0
Increasing time
Y l Pa=Pa, s
> 0
0 Concentration

Direction of
Mass Flux

~

Distance

pAo

Figure 2.4. Concentration profile development between parallel plates.
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as Fick’s first law of diffusion and is given by

. dwa
Jja, =—Dapp —— (2.1-6)
) dy

where ja, and wj represent the molecular mass flux of species A in the y-direction and
mass fraction of species A, respectively. If the total density, p, is constant, then the term
p(dwy/dy) can be replaced by dpa /dy and Eq. (2.1-6) becomes

Jja, =—Dap—— p = constant (2.1-7)
J dy

To measure Dy p experimentally, it is necessary to design an experiment (like the one given
above) in which the convective mass flux is almost zero.

In mass transfer calculations, it is sometimes more convenient to express concentrations
in molar units rather than in mass units. In terms of molar concentration, Fick’s first law of
diffusion is written as

i, =—Dagc— (2.1-8)

where JZ‘)_ and x4 represent the molecular molar flux of species A in the y-direction and the
mole fraction of species .A, respectively. If the total molar concentration, ¢, is constant, then
the term c(dx4 /dy) can be replaced by dc4/dy, and Eq. (2.1-8) becomes

dca
J;{y =—Dap - ¢ = constant (2.1-9)

The diffusion coefficient has the dimensions of m? /s in SI units. Typical values of D4 p are
given in Appendix D. Examination of these values indicates that the diffusion coefficient of
gases has an order of magnitude of 10~ m? /s under atmospheric conditions. Assuming ideal
gas behavior, the pressure and temperature dependence of the diffusion coefficient of gases
may be estimated from the relation

T3/2
Dap o —— (2.1-10)

Diffusion coefficients for liquids are usually in the order of 10~ m?/s. On the other hand,
D4 p values for solids vary from 10790 ¢ 10~ mz/s.

Example 2.3 Air at atmospheric pressure and 95°C flows at 20 m/s over a flat plate of
naphthalene 80 c¢m long in the direction of flow and 60 cm wide. Experimental measure-
ments report the molar concentration of naphthalene in the air, c4, as a function of distance
x from the plate as follows:
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X CA
(cm) (mol/m?)
0 0.117
10 0.093
20 0.076
30 0.063
40 0.051
50 0.043

Determine the molar flux of naphthalene from the plate surface under steady conditions.
Solution

Physical properties

Diffusion coefficient of naphthalene (\A) in air (B) at 95°C (368 K) is

368 368

3/2 3/2
D — (D . —(0.62 x 107 [ — —0.84 x 107> m?
(Dap)3es = ( AB)300<300> ( X )<300> X m-/s

Assumptions

1. The total molar concentration, ¢, is constant.
2. Naphthalene plate is also at a temperature of 95 °C.

Analysis

The molar flux of naphthalene transferred from the plate surface to the flowing stream is
determined from

dca
J* =-D — 1
Ax|x:0 AB( P )x—O (1)

It is possible to calculate the concentration gradient on the surface of the plate by using one
of the several methods explained in Section A.5 in Appendix A.

Graphical method

The plot of c4 versus x is given in Figure 2.5. The slope of the tangent to the curve at x =0
is —0.0023 (mol/m?)/cm.

Curve fitting method

From semi-log plot of ¢4 versus x, shown in Figure 2.6, it appears that a straight line repre-
sents the data fairly well. The equation of this line can be determined by the method of least
squares in the form

y=mx+b 2)
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0.12

0.10

CA (mo]/m3)
o
=3
o

slope =—0.0023

=
=)
>N

T

0.04 L L L L

x (cm)

Figure 2.5. Concentration of species A as a function of position.
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Figure 2.6. Concentration of species A as a function of position.

where

y=1logca

3)

To determine the values of m and b from Egs. (A.6-10) and (A.6-11) in Appendix A, the

required values are calculated as follows:

Yi Xi Xi Vi x,~2
—0.932 0 0 0
—1.032 10 —10.32 100
—1.119 20 —22.38 400
—1.201 30 —36.03 900
—1.292 40 —51.68 1600
—1.367 50 —68.35 2500

>y =—6.943 > x; =150 Y xiyi =—188.76 > x2 =5500
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The values of m and b are
B (6)(—188.76) — (150)(—6.943)

= —0.0087
(6)(5500) — (150)2
_ (£6.943)(5500) — (150)(~188.76) _ o1
B (6)(5500) — (150)2 -
Therefore, Eq. (2) takes the form
logeg =—0.087x —0.94 = ¢4 =0.115¢7%0 4)

Differentiation of Eq. (4) gives the concentration gradient on the surface of the plate as
dca 3 4
e = —(0.115)(0.02) = —0.0023 (mol/m”)/cm = —0.23 mol/m
X/ x=0

Substitution of the numerical values into Eq. (1) gives the molar flux of naphthalene from
the surface as

Ji |y = (084 x 107)(0.23) = 19.32 x 10~ mol/m*s

2.2 DIMENSIONLESS NUMBERS

Newton’s “law” of viscosity, Fourier’s “law” of heat conduction, and Fick’s first “law” of dif-
fusion, in reality, are not laws but defining equations for viscosity, i, thermal conductivity, k,
and diffusion coefficient, D4 p. The fluxes (tyx, ¢y, ja,) and the gradients (dvy/dy, dT/dy,
dp4/dy) must be known or measurable for the experimental determination of u, k, and Dy p.

Newton’s law of viscosity, Eq. (2.1-2), Fourier’s law of heat conduction, Eq. (2.1-4), and
Fick’s first law of diffusion, Egs. (2.1-7) and (2.1-9), can be generalized as

Molecular)  ( Transport Gradient of (2.2-1)
flux ~\ property driving force '

Although the constitutive equations are similar, they are not completely analogous because the
transport properties (u, k., Dap) have different units. These equations can also be expressed
in the following forms:

d
Tyy = _B d—(pvx) p = constant pvy — momentum/volume (2.2-2)
y
k d _~ A~ ~
qy = ——=——(pCpT) pCp = constant pCpT = energy/volume (2.2-3)
pCp dy
. dpa
ja, = —DABE p = constant p4 = mass of A/volume (2.2-4)

The term u/p in Eq. (2.2-2) is called momentum diffusivity or kinematic viscosity, and the
term k/pCp in Eq. (2.2-3) is called thermal diffusivity. Momentum and thermal diffusivities
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Table 2.1. Analogous terms in constitutive equations for momentum, energy, and mass (or mole)
transfer in one-dimension

Momentum Energy Mass Mole
Molecular flux Tyx qy JA, I3 ,
Transport property 1% k Dap Dap
d dT d d
Gradient of driving force Ox — era A
dy dy dy dy
Diffusivity Y o Dap Dap
Quantity/Volume PUX pap T PA CA
d d(pCpT d d
Gradient of Quantity/Volume d(pvx) dloCpl) ara aea
dy dy dy dy

are designated by v and «, respectively. Note that the terms v, «, and D4 p all have the same
units, m?/s, and Eqgs. (2.2-2)—(2.2-4) can be expressed in the general form as

(Molecular Gradient of > (2.2-5)

s ) = (Diffusivity) <Quantity/V01ume

The quantities that appear in Eqs. (2.2-1) and (2.2-5) are summarized in Table 2.1.

Since the terms v, o, and D4 g all have the same units, the ratio of any two of these diffu-
sivities results in a dimensionless number. For example, the ratio of momentum diffusivity to
thermal diffusivity gives the Prandtl number, Pr:

C
Prandtl number = Pr = Yo % (2.2-6)
o

The Prandtl number is a function of temperature and pressure. However, its dependence on
temperature, at least for liquids, is much stronger. The order of magnitude of the Prandtl
number for gases and liquids can be estimated as
10%) (1073
Pr= L =1 for gases
10-2

10%) (1073
Pr= (1)0(—_1) =10 for liquids

The Schmidt number is defined as the ratio of the momentum to mass diffusivities:

. v w
Schmidt number = Sc = = (2.2-7)
Dap  pDasp

The order of magnitude of the Schmidt number for gases and liquids can be estimated as
1073
c=—1=1
(1)(10-5)
g 1073
C=——
(10%)(1079)

for gases

=10 for liquids
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Finally, the ratio of « to D4 p gives the Lewis number, Le:

) o k Sc
Lewis number = Le = = —= = — (2.2-8)
Dap pCpDap Pr
2.3 CONVECTIVE TRANSPORT
Convective flux or bulk flux of a quantity is expressed as
Convective . Characteristic
( Aux ) = (Quantity/Volume) < velocity ) (2.3-1)

When air is pumped through a pipe, it is considered a single phase and a single component
system. In this case, there is no ambiguity in defining the characteristic velocity. However, if
the oxygen in the air were reacting, then the fact that air is composed predominantly of two
species, O and N», would have to be taken into account. Hence, air should be considered
a single phase, binary component system. For a single phase system composed of n compo-
nents, the general definition of a characteristic velocity is given by

n
ven =y _ Bivi (23-2)
i

where B; is the weighting factor and v; is the velocity of a constituent. The three most common
characteristic velocities are listed in Table 2.2. The term V; in the definition of the volume
average velocity represents the partial molar volume of a constituent. The molar average
velocity is equal to the volume average velocity when the total molar concentration, ¢, is
constant. On the other hand, the mass average velocity is equal to the volume average velocity
when the total mass density, p, is constant.

The choice of a characteristic velocity is arbitrary. For a given problem, it is more conve-
nient to select a characteristic velocity that will make the convective flux zero and thus yield a
simpler problem. In the literature, it is common practice to use the molar average velocity for
dilute gases, i.e., ¢ = constant, and the mass average velocity for liquids, i.e., p = constant.

It should be noted that the molecular mass flux expression given by Eq. (2.1-6) represents
the molecular mass flux with respect to the mass average velocity. Therefore, in the equation
representing the total mass flux, the characteristic velocity in the convective mass flux term is
taken as the mass average velocity. On the other hand, Eq. (2.1-8) is the molecular molar flux
with respect to the molar average velocity. Therefore, the molar average velocity is considered
the characteristic velocity in the convective molar flux term.

Table 2.2. Common characteristic velocities

Characteristic Velocity Weighting Factor Formulation
Mass average Mass fraction (w;) V=)0V
Molar average Mole fraction (x;) v =D

Volume average Volume fraction (¢; V;) =V
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2.4 TOTAL FLUX

Since the total flux of any quantity is the sum of its molecular and convective fluxes, then

Total Transport | ( Gradient of Quantity \ ( Characteristic
= .. + [ — i (2.4-1)
flux property driving force Volume velocity
Molecular flux

Convective flux
or,

Total e e Gradient of
( Aux ) = (Diffusivity) ( ) <

N Quantity \ [ Characteristic (2.4-2)
Quantity/Volume Volume velocity o
Molecular flux

~\~

Convective flux

The quantities that appear in Egs. (2.4-1) and (2.4-2) are given in Table 2.3.

The general flux expressions for momentum, energy, and mass transport in different coor-
dinate systems are given in Appendix C.

From Eq. (2.4-2), the ratio of the convective flux to the molecular flux is given by

Convective flux  (Quantity/Volume)(Characteristic velocity)
Molecular flux  (Diffusivity)(Gradient of Quantity/Volume)

(2.4-3)

Table 2.3. Analogous terms in flux expressions for various types of transport in one-dimension
Type of Transport

Total Flux Molecular Flux

Convective Flux Constraint
dvx
Momentum

dy None
ﬂyx

(pvx) Uy
Y d(pvy) p = const.
dy

k=
dy
Energy ey

None
~ (p E:\P T)vy
—a M P 61: — const.

dwa
Mass

None
PAVy
dpa

p = const.
Mole

Na

None
CAV
dcp

¢ =const.
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Since the gradient of a quantity represents the variation of that particular quantity over a
characteristic length, the “Gradient of Quantity/Volume” can be expressed as

Difference in Quantity/Volum
Gradient of Quantity/Volume = Lerenee Q.u' YT Vorue (2.4-4)
Characteristic length

The use of Eq. (2.4-4) in Eq. (2.4-3) gives

Convective flux  (Characteristic velocity)(Characteristic length)

= - (2.4-5)
Molecular flux Diffusivity

The ratio of the convective flux to the molecular flux is known as the Peclet number, Pe.
Therefore, Peclet numbers for heat and mass transfers are

Pey = (2.4-6)
o
Veh Len
Pey = (2.4-7)
Dap
Hence, the total flux of any quantity is given by

Molecular flux Pek 1
Total flux = { Molecular flux + Convective flux Pe >~ 1 (2.4-8)

Convective flux Pe>1

2.4.1 Rate of Mass Entering and/or Leaving the System

The mass flow rate of species i entering and/or leaving the system, #i;, is expressed as

- Mass Gradient of . Mass of i | ( Characteristic Flow
mi= Diffusivity / \ Mass of i/Volume Volume velocity area

~- ~-
Molecular mass flux of species i Convective mass flux of species i

(2.4-9)
In general, the mass of species i may enter and/or leave the system by two means:

e Entering and/or leaving conduits,
e Exchange of mass between the system and its surroundings through the boundaries of
the system, i.e., interphase transport.

When a mass of species i enters and/or leaves the system by a conduit(s), the characteristic
velocity is taken as the average velocity of the flowing stream and it is usually large enough to
neglect the molecular flux compared to the convective flux, i.e., Pey; >> 1. Therefore, Eq. (2.4-

9) simplifies to
M fi
i — ( ass o l> (Avera.ge) <Flow) (2.4-10)
Volume velocity area

i = pi(v)A = pi Q| (24-11)

or,




Summation of Eq. (2.4-11) over all species leads to the total mass flow rate, m, entering and/or
leaving the system by a conduit in the form

1 =p(v)A =pQ| (2.4-12)

On a molar basis, Egs. (2.4-11) and (2.4-12) take the form

| =ci{v)A=c;Q| (2.4-13)

li=c(r)A=cQ)| (2.4-14)

On the other hand, when a mass of species i enters and/or leaves the system as a result
of interphase transport, the flux expression to be used is dictated by the value of the Peclet
number as shown in Eq. (2.4-8).

24.2 Rate of Energy Entering and/or Leaving the System

The rate of energy entering and/or leaving the system, E. is expressed as

E = Thermal Gradient of + Energy Characteristic Flow
- ditfusivity Energy/Volume Volume velocity area

- -
Muolecular energy flux Convective energy flux

(2.4-15)
As in the case of mass, energy may enter or leave the system by two means:

# By inlet and/or outlet streams,
e By exchange of energy between the system and its surroundings through the boundaries
of the system in the form of heat and work.

When energy enters and/or leaves the system by a conduit(s), the characteristic velocity is
taken as the average velocity of the flowing stream and it is usually large enough to neglect
the molecular flux compared to the convective flux, i.e.. Pey 3 1. Therefore, Eq. (2.4-15)

simplifies to
Ea (ﬂ) (Avera_ge) (Fluw) (2.4-16)
Volume / \ velocity area

Energy per unit volume, on the other hand, is expressed as the product of energy per unit
mass, £, and mass per unit volume, i.e., density, such that Eq. (2.4-16) becomes

. E M -
E= 2 iass Averzfge Flow — B (2.4-17)
Mass Volume / \ velocity area

Mass flow rate




PROBLEMS

2.2. A Newtonian fluid with a viscosity of 50 cP is placed between two large parallel plates
separated by a distance of 8 mm. Each plate has an area of 2 m’. The upperplate moves in the
postive x-direction with a velocity of 0.4 m/s while the lower plate is kept stationary . (a) Calculate
the steady force applied to the upper plate. (b) The fluid in part (a) is replaced with another
Newtonian fluid of viscosity 5 cP. If the steady force applied to the upper plate is the same as that
of part (a), calculate the velocity of the upper plate.




2.3 Three parallel flat plates are separated by two fluids as shown in the figure below. What
should be the value of ¥> so as to keep the plate in the middle stationary?

V.';' =1 mis —
Fluid B (ug = 0.8 cP) ¥,
¥ =5
Fluid A (s = 1 cP) =2
— V;=2mfs
(Answer: 2 cm)

Answer: F/A=-u, 2 =-1x 103X —2—=-4N
S| Y1 5X10

Now, 4=0.8 x 1073 x——
Y,Xx10

Y,=0.02m=2cm

2.4 The steady rate of heat loss through a plane slab, which has a surface area of 3 m” and
is 7 cm thick, is 72 W. Determine the thermal conductivity of the slab if the temperature
distribution in the slab is given as

T=5x+10
where T is temperature in °C and x is the distance measured from one side of the slab in cm.
(Answer: 0.048 W /m-K)
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2.5 The inner and outer surface temperatures of a 20 cm thick brick wall are 30°C and
—5°C, respectively. The surface area of the wall is 25 m?. Determine the steady rate of heat
loss through the wall if the thermal conductivity is 0.72 W/m-K.

(Answer: 3150 W)

2,12 Airat 20°C and 1 atm pressure flows over a porous plate that is soaked in ethanol.
The molar concentration of ethanol in the air, ¢4, is given by

€4 =4£—1.5z

whnmcaisinhnulfm3andzisthcdislnncemeasurﬂdﬁumﬂlﬂsmfn{:ﬂofﬂ]ﬂp]m.:in
meters. Calculate the molar flux of ethanol from the plate.

(Answer: 0.283 kmol/m>-h)
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